Random model for the moments of the eigenfunctions of a point-scatterer

Thomas Letendre (IMO) joint work with H. Ueberschär

ANH meeting - September 18, 2020

Why point-scatterers?

イロト イヨト イヨト イヨト

- 2

Classical vs quantum dynamics

Point mass in some ambient space (M, g).

Classical

- Phase space T^*M (cotangent bundle).
- Dynamics governed by a differential equation.
- Want to understand its flow.

Example: geodesic flow on (M, g).

Classical vs quantum dynamics

Point mass in some ambient space (M, g).

Classical

- Phase space T^*M (cotangent bundle).
- Dynamics governed by a differential equation.
- Want to understand its flow.

Example: geodesic flow on (M, g).

Quantum

- Space $L^2(M)$ of wave functions.
- Dynamics governed by a self-adjoint operator.
- Want to understand its spectrum and eigenfunctions.

Example: Laplacian Δ .

Classical vs quantum dynamics

Point mass in some ambient space (M, g).

Classical

- Phase space T^*M (cotangent bundle).
- Dynamics governed by a differential equation.
- Want to understand its flow.

Example: geodesic flow on (M, g).

Quantum

- Space $L^2(M)$ of wave functions.
- Dynamics governed by a self-adjoint operator.
- Want to understand its spectrum and eigenfunctions.

Example: Laplacian Δ .

Semi-classical analysis

Relate the classical dynamics to the properties of the eigenfunctions, in the semi-classical limit: ϕ_{λ} eigenfunction with eigenvalue λ and $\lambda \rightarrow +\infty$.

Model systems

Integrable case

Model system: 2-dimensional flat torus.

- Classical: explicit geodesic flow.
- Quantum: reasonnably explicit spectrum and eigenfunctions.

Chaotic case

Model system: hyperbolic surface

- Classical: explicit geodesic flow.
- Quantum: non-explicit spectrum and eigenfunctions.

★ B > < B >

Point-scatterer (informal version)

A point-scatterer on M at x is an operator that can be thought of as " $\Delta + \delta_x$ ", where

$$(\Delta + \delta_x)f = \Delta f + f(x)\delta_x.$$

Quantum version of the geodesic flow on M with a point obstacle at x.

Point-scatterer (informal version)

A point-scatterer on M at x is an operator that can be thought of as " $\Delta + \delta_x$ ", where

$$(\Delta + \delta_x)f = \Delta f + f(x)\delta_x.$$

Quantum version of the geodesic flow on M with a point obstacle at x.

On a flat torus (Šeba billiard):

- classical dynamics still integrable;
- quantum system exhibit many features of quantum chaos;
- reasonnably explicit spectrum and eigenfunctions.

Berry's Conjecture

(M,g) with chaotic geodesic flow. X uniform random variable on M. ϕ_{λ} Laplace eigenfunction associated with λ .

Weak Berry's Conjecture

The random variable $\phi_{\lambda}(X)$ satisfies a Central Limit Theorem as $\lambda \to +\infty$:

$$\frac{\phi_{\lambda}(X) - \mathbb{E}[\phi_{\lambda}(X)]}{\sqrt{\mathsf{Var}(\phi_{\lambda}(X))}} \xrightarrow[\lambda \to +\infty]{\mathsf{distribution}} \mathcal{N}(0, 1).$$

Berry's Conjecture

(M,g) with chaotic geodesic flow. X uniform random variable on M. ϕ_{λ} Laplace eigenfunction associated with λ .

Weak Berry's Conjecture

The random variable $\phi_{\lambda}(X)$ satisfies a Central Limit Theorem as $\lambda \to +\infty$:

$$\frac{\phi_{\lambda}(X) - \mathbb{E}[\phi_{\lambda}(X)]}{\sqrt{\mathsf{Var}(\phi_{\lambda}(X))}} \xrightarrow[\lambda \to +\infty]{\mathsf{distribution}} \mathcal{N}(0, 1).$$

Moments Conjecture
For all
$$p \in \mathbb{N}^*$$
, $\mathbb{E}\left[\left(\frac{\phi_{\lambda}(X) - \mathbb{E}[\phi_{\lambda}(X)]}{\sqrt{\operatorname{Var}(\phi_{\lambda}(X))}}\right)^p\right] \xrightarrow[\lambda \to +\infty]{} \mu_p$, where
 $\mu_p = \mathbb{E}[\mathcal{N}(0, 1)^p] = \begin{cases} 0 & \text{if } p \text{ is odd,} \\ (p-1)(p-3)\cdots 1 & \text{if } p \text{ is even.} \end{cases}$

6 / 25

New eigenfunctions of a point-scatterer on a torus

Thomas Letendre

Random model of a point-scatterer ANH meeting - 18/09/20 7/25

(B)

Point-scatterers on rectangular flat tori

Ambient space

•
$$\mathbb{T}_{\alpha} = \mathbb{R}^2 / \left(\alpha \mathbb{Z} \oplus \frac{1}{\alpha} \mathbb{Z} \right)$$
 with $\alpha > 0$;

• dx Lebesgue measure, such that $\operatorname{Vol}(\mathbb{T}_{\alpha}) = 1$.

Laplacian
$$\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right)$$
: self-adjoint positive operator on $L^2(\mathbb{T}_{\alpha})$.

Point-scatterers on rectangular flat tori

Ambient space

•
$$\mathbb{T}_{\alpha} = \mathbb{R}^2 / \left(\alpha \mathbb{Z} \oplus \frac{1}{\alpha} \mathbb{Z} \right)$$
 with $\alpha > 0$;

• dx Lebesgue measure, such that $\operatorname{Vol}(\mathbb{T}_{\alpha}) = 1$.

Laplacian
$$\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right)$$
: self-adjoint positive operator on $L^2(\mathbb{T}_{\alpha})$.

Theorem (von Neumann)

Denoting by $D_0 = C_c^{\infty}(\mathbb{T}_{\alpha} \setminus \{0\})$, there exists a one-parameter family $(\Delta_{\varphi})_{\varphi \in (-\pi,\pi]}$ of self-adjoint extensions of $\Delta_{|D_0}$ to $L^2(\mathbb{T}_{\alpha})$.

If $\varphi = \pi$ we recover Δ , else we say that Δ_{φ} is a *point-scatterer*.

Laplace spectrum on \mathbb{T}_{lpha}

$$\mathsf{Sp}(\Delta) = \left\{ 4\pi^2 \left(\frac{a^2}{\alpha^2} + \alpha^2 b^2 \right) \ \middle| \ a, b \in \mathbb{N} \right\} = \{ \lambda_k \mid k \ge 0 \},$$

where $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_k < \cdots \xrightarrow[k \to +\infty]{} +\infty.$

$$\Lambda_k = \left\{ \xi \in \frac{1}{\alpha} \mathbb{Z} \oplus \alpha \mathbb{Z} \mid \|\xi\| = \frac{\sqrt{\lambda_k}}{2\pi} \right\}$$

wave vectors associated with λ_k .

 $\left\{ e^{2i\pi \langle \xi, \cdot \rangle} \mid \xi \in \Lambda_k \right\} \text{ orthonormal basis} \\ \text{ of } \ker \left(\Delta - \lambda_k \operatorname{Id} \right) \subset L^2(\mathbb{T}_\alpha).$

$$r_k = \operatorname{card}(\Lambda_k)$$
 multiplicity of λ_k .

Weyl Law

Spectrum counting function

$$N(\lambda) = \sum_{\lambda_k \leqslant \lambda} r_k = \operatorname{card} \left\{ \xi \in \frac{1}{\alpha} \mathbb{Z} \oplus \alpha \mathbb{Z} \ \middle| \ \|\xi\| \leqslant \frac{\sqrt{\lambda}}{2\pi} \right\}.$$

Weyl Law

We have
$$N(\lambda) = rac{\lambda}{4\pi} + O\left(\sqrt{\lambda}\right)$$
 as $\lambda o +\infty$.

Weyl Law

Spectrum counting function

$$N(\lambda) = \sum_{\lambda_k \leqslant \lambda} r_k = \operatorname{card} \left\{ \xi \in \frac{1}{\alpha} \mathbb{Z} \oplus \alpha \mathbb{Z} \ \middle| \ \|\xi\| \leqslant \frac{\sqrt{\lambda}}{2\pi} \right\}.$$

Weyl Law

We have
$$N(\lambda)=rac{\lambda}{4\pi}+Oig(\sqrt{\lambda}ig)$$
 as $\lambda o+\infty.$

- If $\alpha^4 \notin \mathbb{Q}$ (irrational tori), $r_k \in \{1, 2, 4\}$ and generically $r_k = 4$.
- If α = 1 (square torus), r_k = 8 infinitely many times (density 0 subsequence). Besides, as n → +∞,

$$\frac{1}{n+1}\sum_{k=0}^n r_k \sim C\sqrt{\ln(\lambda_n)}.$$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Spectrum of the point-scatterer Δ_{φ} ($\varphi \neq \pi$)

We have $\operatorname{Sp}(\Delta_{\varphi}) = \{\lambda_k \mid k \ge 1\} \sqcup \{\tau_k^{\varphi} \mid k \ge 0\}.$

- λ_k of multiplicity $r_k 1$, associated with $\{\phi \in \ker(\Delta \lambda_k \operatorname{Id}) | \phi(0) = 0\}$.
- τ_k^{φ} simple eigenvalue. It's the (k + 1)-th solution of:

New eigenfunctions of Δ_{φ} ($\varphi \neq \pi$)

Let
$$\tau \in \mathbb{R} \setminus \text{Sp}(\Delta)$$
, we denote $G_{\tau} = -\frac{1}{\tau} + \sum_{k \geqslant 1} \sum_{\xi \in \Lambda_k} \frac{e^{2i\pi \langle \xi, \cdot \rangle}}{\lambda_k - \tau}$ from \mathbb{T}_{α} to \mathbb{R} .

New eigenfunctions

If au is one of the new eigenvalues, then $(\Delta_{\varphi} - \tau \operatorname{Id})G_{\tau} = 0$.

New eigenfunctions of Δ_{φ} ($\varphi \neq \pi$)

Let
$$au \in \mathbb{R} \setminus \text{Sp}(\Delta)$$
, we denote $G_{ au} = -\frac{1}{ au} + \sum_{k \geqslant 1} \sum_{\xi \in \Lambda_k} \frac{e^{2i\pi \langle \xi, \cdot \rangle}}{\lambda_k - au}$ from \mathbb{T}_{α} to \mathbb{R} .

New eigenfunctions

If au is one of the new eigenvalues, then $(\Delta_{\varphi} - \tau \operatorname{Id})G_{\tau} = 0$.

Moments of G_{τ}

Let $p \in \mathbb{N}^*$ and $\tau \in \mathbb{R} \setminus Sp(\Delta)$, the *p*-th central *moment* of G_{τ} is:

$$M^p_{ au} = \int_{\mathbb{T}_{lpha}} \left(G_{ au}(x) + rac{1}{ au}
ight)^p \mathrm{d}x.$$

We have
$$M_{ au}^1 = 0$$
 and $M_{ au}^2 = \sum_{k \geqslant 1} rac{r_k}{(\lambda_k - au)^2}.$

Deterministic problem

Question Do we have $\frac{M^p_{\tau}}{(M^2_{\tau})^{\frac{p}{2}}} \xrightarrow[\tau \to +\infty]{} \mu_p$ for any $p \ge 3$?

- Conjectured by Šeba (1990).
- Keating-Marklov-Winn (2003) argue that it's not always true.
- Kurlberg–Ueberschär (2019): if α^4 is diophantine then

$$\frac{M_{\tau}^4}{\left(M_{\tau}^2\right)^2} \nrightarrow \mu_4,$$

not even along sequences of the form $(\tau_k^{\varphi})_{k \ge 0}$ with $\varphi \neq \pi$.

イロト イポト イヨト イヨト 二日

The Berry–Tabor Conjecture

(a)

Poisson point processes

A random variable N in \mathbb{N} is Poisson distributed with parameter $\nu \ge 0$ if $\mathbb{P}(N = k) = e^{-\nu} \frac{\nu^k}{k!}$ for all $k \in \mathbb{N}$. We denote this by $N \sim \propto (\nu)$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Poisson point processes

A random variable N in \mathbb{N} is Poisson distributed with parameter $\nu \ge 0$ if $\mathbb{P}(N = k) = e^{-\nu} \frac{\nu^k}{k!}$ for all $k \in \mathbb{N}$. We denote this by $N \sim \propto (\nu)$.

Poisson point process

Let ν be a measure on $[0, +\infty)$, a *Poisson point process* with intensity ν is a random subset $P \subset [0, +\infty)$ such that:

- for any Borel subset B, $card(P \cap B) \sim \propto (\nu(B))$.
- for any disjoint Borel subsets B₁,..., B_n, the random variables (card(P ∩ B_i))_{1≤i≤n} are independent.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Poisson point processes

A random variable N in \mathbb{N} is Poisson distributed with parameter $\nu \ge 0$ if $\mathbb{P}(N = k) = e^{-\nu} \frac{\nu^k}{k!}$ for all $k \in \mathbb{N}$. We denote this by $N \sim \propto (\nu)$.

Poisson point process

Let ν be a measure on $[0, +\infty)$, a *Poisson point process* with intensity ν is a random subset $P \subset [0, +\infty)$ such that:

- for any Borel subset B, $card(P \cap B) \sim \propto (\nu(B))$.
- for any disjoint Borel subsets B₁,..., B_n, the random variables (card(P ∩ B_i))_{1≤i≤n} are independent.

If $\nu([0, +\infty)) = +\infty$, then almost surely the elements of *P* can be ordered into a sequence $(\lambda_k)_{k \ge 1}$ such that:

$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_k \xrightarrow[k \to +\infty]{} +\infty.$$

(김희) 김 글 (김희) (글)

The Berry–Tabor Conjecture

Conjecture (Berry–Tabor)

On \mathbb{T}_{α} the sequence $(\lambda_k)_{k \ge 1}$ of positive eigenvalues of Δ "behaves like" a Poisson point process.

If $\alpha^4 \notin \mathbb{Q}$, generically $r_k = 4$. In order to agree with Weyl's Law, we need:

$$4
u([0,\lambda]) = 4\mathbb{E}[\mathsf{card}(P \cap [0,\lambda])] = N(\lambda) \sim rac{\lambda}{4\pi},$$

so that ν should be something like $\frac{1}{16\pi} dt$.

A B A A B A B

The Berry–Tabor Conjecture

Conjecture (Berry–Tabor)

On \mathbb{T}_{α} the sequence $(\lambda_k)_{k \ge 1}$ of positive eigenvalues of Δ "behaves like" a Poisson point process.

If $\alpha^4 \notin \mathbb{Q}$, generically $r_k = 4$. In order to agree with Weyl's Law, we need:

$$4
u([0,\lambda]) = 4\mathbb{E}[\mathsf{card}(P\cap[0,\lambda])] = \mathsf{N}(\lambda) \sim rac{\lambda}{4\pi},$$

so that ν should be something like $\frac{1}{16\pi} dt$.

• Numerics for
$$\alpha^4 \notin \mathbb{Q}$$
: $\frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k - \lambda_{k-1}} \xrightarrow{\text{distribution}} \mathcal{E}\left(\frac{1}{16\pi}\right)$.
• Somet: $\frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k - \lambda_{k-1}} \xrightarrow{\text{distribution}} \mathcal{E}\left(\frac{1}{16\pi}\right)$.

• Sarnak: $\frac{1}{N} \sum_{1 \le k, l \le N} \delta_{\lambda_k - \lambda_l}$ admits a Poissonian limit for a.e. flat torus.

A simple plan

- G_{τ} only depends on τ and the sequences $(\lambda_k)_{k \ge 1}$ and $(\Lambda_k)_{k \ge 1}$.
 - Replace $Sp(\Delta)$ with a Poisson point process.
 - Tune its intensity in order to agree with Weyl's Law.
 - Choose directions in $[0, \frac{\pi}{2}]$ for the wave vectors in $\Lambda_k \cap [0, +\infty)^2$ and take the closure under symmetry with respect to the coordinate axes (for example: independent uniform directions).

伺下 イヨト イヨト ニヨ

A too simple plan

 G_{τ} only depends on τ and the sequences $(\lambda_k)_{k \ge 1}$ and $(\Lambda_k)_{k \ge 1}$.

- Replace $Sp(\Delta)$ with a Poisson point process.
- Tune its intensity in order to agree with Weyl's Law.
- Choose directions in [0, ^π/₂] for the wave vectors in Λ_k ∩ [0, +∞)² and take the closure under symmetry with respect to the coordinate axes (for example: independent uniform directions).

Problems

- G_{τ} no longer defines a function on \mathbb{T}_{α} .
- Interactions between ν and the multiplicities $(r_k)_{k \ge 1}$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition of the random model

(a)

Step 1: deterministic expression of the moments

Given $a = (a_k)_{k \ge 1}$ with values in \mathbb{N} and finite support, we denote:

•
$$|a| = \sum_{k \ge 1} a_k$$
,
• $a! = \prod_{k \ge 1} a_k!$,
• $N_a = \operatorname{card} \left\{ (\xi_{k,l})_{1 \le l \le a_k} \in \prod_{k \ge 1} (\Lambda_k)^{a_k} \ \left| \ \sum_{k \ge 1} \sum_{l=1}^{a_k} \xi_{k,l} = 0 \right\} \right\}$.

Lemma

For all $p \ge 1$ and $\tau \in \mathbb{R} \setminus Sp(\Delta)$, we have:

$$\mathcal{M}^{p}_{\tau} = p! \sum_{|\mathbf{a}|=p} \frac{N_{\mathbf{a}}}{\mathbf{a}!} \prod_{k \ge 1} \left(\frac{1}{\lambda_{k} - \tau}\right)^{\mathbf{a}_{k}}$$

イロト イポト イヨト イヨト 二日

Step 2: randomization of the wave vectors

If
$$\theta \in [0, \frac{\pi}{2}]$$
, $\zeta^{(1)}(\theta) = (\cos(\theta), \sin(\theta))$.

 η measure on $[0, \frac{\pi}{2}]^{\mathbb{N}^* \times \mathbb{N}^*}$, distribution of a sequence of independent uniform random variables.

Step 2: randomization of the wave vectors

If
$$\theta \in [0, \frac{\pi}{2}]$$
, $\zeta^{(1)}(\theta) = (\cos(\theta), \sin(\theta))$.

 η measure on $[0, \frac{\pi}{2}]^{\mathbb{N}^* \times \mathbb{N}^*}$, distribution of a sequence of independent uniform random variables.

Randomized wave vectors

We choose:

- $(\lambda_k)_{k \ge 1}$ increasing sequence of positive numbers;
- $(m_k)_{k \ge 1}$ sequence with values in \mathbb{N}^* ;
- $(\theta_{k,l})_{k,l \ge 1}$ random variables in $[0, \frac{\pi}{2}]$, with a density with respect to η .

We redefine
$$\Lambda_k = \frac{\sqrt{\lambda_k}}{2\pi} \cdot \left\{ \zeta^{(i)}(\theta_{k,j}) \mid 1 \leqslant i \leqslant 4 \text{ et } 1 \leqslant j \leqslant m_k \right\}.$$

A (10) A (10)

Spectral sums and almost sure expression

Spectral sums

Let
$$q \geqslant 1$$
 and $\tau \in \mathbb{R}$, we set $S^q_\tau = \sum_{k \geqslant 1} \frac{m_k}{(\lambda_k - \tau)^{2q}} \in [0, +\infty].$

Proposition

Almost surely, for any $p \ge 1$ and $\tau \in \mathbb{R} \setminus \{\lambda_k \mid k \ge 0\}$ we have: • $M_{\tau}^{2p-1} = 0$:

• if $S^q_{\tau} < +\infty$ for all $q \in \{1, \dots, p\}$ then $M^{2p}_{\tau} = P_p(S^1_{\tau}, S^2_{\tau}, \dots, S^p_{\tau})$, where $P_p \in \mathbb{R}[X_1, \dots, X_p]$ is deterministic, explicit, depends only on p.

Almost surely, $\operatorname{card}(\Lambda_k) = 4m_k$ for all $k \ge 1$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Step 3: randomization of the Laplace spectrum

Randomized eigenvalues and multiplicities

We choose $m: [0, +\infty) \rightarrow [1, +\infty)$.

• We model $(\lambda_k)_{k \ge 1}$ by a Poisson process with intensity $\nu_m = \frac{1}{16\pi m} dt$.

• For all
$$k \ge 1$$
, we set $m_k = m(\lambda_k)$.

Step 3: randomization of the Laplace spectrum

Randomized eigenvalues and multiplicities

We choose $m: [0, +\infty) \rightarrow [1, +\infty)$.

• We model $(\lambda_k)_{k \ge 1}$ by a Poisson process with intensity $\nu_m = \frac{1}{16\pi m} dt$.

• For all
$$k \ge 1$$
, we set $m_k = m(\lambda_k)$.

We say that *m* is a *multiplicity function* if:

•
$$m$$
 is \mathcal{C}^1 ,

• there exists $\beta > 0$ such that $m'(t) = O(t^{-\beta})$ as $t \to +\infty$.

Examples

- $m: t \mapsto 1$ (irrational tori).
- $m: t \mapsto 1 + C\sqrt{\ln(1+t)}$ (average behavior on the square torus).

Results for the random model

(a)

Main result (L.-Ueberschär, 2019)

Let $p \ge 1$ and $\tau \in \mathbb{R}$, the randomized moment $M_{\tau}^{2p} = P_p(S_{\tau}^1, \ldots, S_{\tau}^p)$ is almost surely well-defined.

イロト 不得下 イヨト イヨト 二日

Main result (L.-Ueberschär, 2019)

Let $p \ge 1$ and $\tau \in \mathbb{R}$, the randomized moment $M_{\tau}^{2p} = P_p(S_{\tau}^1, \ldots, S_{\tau}^p)$ is almost surely well-defined.

Given $p \ge 2$, there exists a one-parameter family $(R_p(\ell))_{0 \le \ell \le +\infty}$ of random variables such that: if $m(\tau) \xrightarrow[\tau \to +\infty]{} \ell$ then

$$rac{M^{2p}_{ au}}{(M^2_{ au})^p} \xrightarrow[au o +\infty]{ ext{distribution}} \mu_{2p} R_p(\ell).$$

Main result (L.-Ueberschär, 2019)

Let $p \ge 1$ and $\tau \in \mathbb{R}$, the randomized moment $M_{\tau}^{2p} = P_p(S_{\tau}^1, \ldots, S_{\tau}^p)$ is almost surely well-defined.

Given $p \ge 2$, there exists a one-parameter family $(R_p(\ell))_{0 \le \ell \le +\infty}$ of random variables such that: if $m(\tau) \xrightarrow[\tau \to +\infty]{} \ell$ then

$$\frac{M_{\tau}^{2p}}{(M_{\tau}^{2})^{p}} \xrightarrow[\tau \to +\infty]{\text{distribution}} \mu_{2p} R_{p}(\ell).$$

- The distribution of $R_p(\ell)$ only depends on ℓ .
- $R_p(\ell) = R_p(\ell')$ in distribution if and only if $\ell = \ell'$.
- If $\ell < +\infty$, then $R_p(\ell)$ admits a smooth density.
- If $\ell = +\infty$, then $R_p(\ell) = 1$ a.s. and convergence holds in probability.

(日本)(日本)(日本)(日本)

The end

Thank you for your attention.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト